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Abstract
A new mechanism for nucleation of dislocation dipoles at nanoparticles
(nanoinclusions) in nanocomposite solids is suggested and theoretically
described. The mechanism represents the nucleation of a nanoscale dipole of
‘non-crystallographic’ partial dislocations whose Burgers vector magnitudes
continuously grow during the nucleation process. It is shown that the
dislocations nucleated at nanoparticles can be emitted into a matrix in
nanocomposites deformed at high mechanical stresses.

(Some figures in this article are in colour only in the electronic version)

Nanocomposite solids consisting of at least two phases, with at least one phase having
characteristic sizes less than 100 nm, represent the subject of intensive research efforts
motivated by their diverse technological applications and interest in fundamentals of
nanoscale effects in solids; see, e.g., [1–7]. Both the structure and properties of crystalline
nanocomposites such as ‘nanoparticle–matrix’ and ‘nanoscale film–substrate’ composites are
strongly influenced by misfit stresses arising due to a misfit between the crystal lattices of
the adjacent component phases at interphase boundaries. A partial relaxation of misfit
stresses often occurs by nucleation and evolution of misfit dislocations (MDs) at interphase
boundaries in thin-film and bulk nanocomposites; see, e.g., [8–20]. Commonly misfit stress
relaxation is realized through the nucleation of MD semiloops at the free surface, their
subsequent glide to the interphase boundary and further expansion [8, 9]. This scenario
requires that the dislocations overcome a rather high energetic barrier, which appears due to
the attraction of dislocations to the free surface. However, in general, misfit stress relaxation
in nanocomposites may occur by alternative mechanisms. In particular, we think that there
exists a new alternative relaxation mechanism in nanoparticle–matrix nanocomposites. This
mechanism involves the non-local nucleation of a nanoscale dipole of ‘non-crystallographic’
partial dislocations (located at and near the nanoparticle–matrix interface) with a Burgers
vector magnitude s growing from zero to the Burgers vector magnitude b of a perfect lattice
dislocation (figures 1(a)–(d)). The new mechanism effectively operates under the action of
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Figure 1. Mechanisms for formation of a dislocation dipole at a nanoparticle (rectangular inclusion)
in a nanocomposite solid. (a)–(d) The new mechanism involves a nanoscale ideal shear. (a), (b) A
nanoscale ideal shear occurs along a fragment of nanoparticle–matrix interface plane and results in
the formation of dipole of non-crystallographic partial dislocations with very small Burgers vector
magnitude s, connected by a stacking fault. (c) The Burgers vector magnitude s continuously
increases and (d) reaches the Burgers vector magnitude b of perfect misfit dislocations. (e)–
(h) The standard mechanism is realized by (e) generation of a dipole of misfit dislocations at
the nanoparticle–matrix interface followed by (f)–(h) their glide in opposite directions along the
interface plane.



Letter to the Editor L227

external mechanical stresses that can induce emission of lattice dislocations from nanoparticles
in a mechanically loaded nanocomposite. The main aim of this letter is to theoretically describe
both the new mechanism of dislocation nucleation at nanoparticles and the dislocation emission
by nanoparticles in deformed nanoparticle–matrix nanocomposites.

Let us consider a model nanocomposite solid that consists of a matrix and a rectangular
inclusion (nanoparticle) with an infinite length, nanoscale width and height (figure 1). The
nanocomposite is subjected to the action of an external shear stress τ . Within the model, the
matrix and nanoparticle are elastically isotropic solids having the same values of the shear
modulus G and the same values of Poisson’s ratio ν. In the coordinate system shown in figure 1,
the nanoparticle occupies the region (−a < x < a, −c < y < c) and is characterized
by a uniform three-axis dilatational eigenstrain ε∗

i j = f δi j , where i, j = x, y, z, and δi j

is the Kronecker delta. In the case of cubic crystal lattices of the matrix and nanoparticle,
the magnitude f of the nanoparticle eigenstrain determines the misfit of the crystal lattice
parameters am and ai of the matrix and nanoparticle, respectively. The misfit f is defined as
f = (am − ai)/ai . For convenience, in the following we put f > 0.

If the values of the misfit f and external shear stress τ are high enough, the external stress
and misfit stresses can induce the generation of a dislocation dipole at one of the nanoparticle
facets (figure 1(e)). The dislocation dipole can form by the standard mechanism involving the
nucleation of a dipole of perfect dislocations with an extremely small interspacing (equal to
one interatomic distance; see figure 1(e)) and subsequent glide of the generated dislocations
in opposite directions (figures 1(f)–(h)). Also, we think that the dislocation dipole can form
by a new mechanism, namely via the non-local formation of a nanoscale dipole of non-
crystallographic partial dislocations whose Burgers vector magnitude s continuously grows
from 0 to the magnitude b of the Burgers vector of lattice dislocations (figures 1(a)–(d)). In
doing so, at the first stage of the dipole formation, the partial dislocations have the Burgers
vectors of a very small magnitude s and are distant from each other by several nanometres
(figures 1(a) and (b)). Such a dislocation dipole (hereinafter called a nanodisturbance) forms
due to a nanoscale plastic shear by value of s in the region between the dislocations, where a
nanoscale stacking fault is generated. At the second stage, due to the action of both the misfit
stresses and external shear stress τ , the magnitude s of the dislocation Burgers vectors increases
(figure 1(c)). Finally, if the stresses are high enough, the magnitude s of the dislocation Burgers
vectors reaches the magnitude b of the Burgers vector of a perfect dislocation, in which case
the nanodisturbance transforms into a dipole of conventional perfect dislocations (figure 1(d)).

Thus, the standard mechanism for dislocation dipole formation comprises the formation of
two perfect dislocations at a very small distance from each other and growth of the dislocation
interspacing (figures 1(e)–(h)), while the new mechanism includes the non-local formation
of two dislocations (with very small Burgers vector magnitudes) at a comparatively large,
nanoscale distance from each other and further growth of their Burgers vectors (figures 1(a)–
(d)). To judge the opportunities for the formation of a dislocation dipole by the two mechanisms
described, we compare the equilibrium conditions for dipole formation with the aid of the new
and the standard mechanism.

First, consider the generation of a nanodisturbance at the nanoparticle–matrix interface
(figures 1(a)–(d)). The nanodisturbance represents a dipole of partial dislocations with the
Burgers vectors ±s = ±sex , with s ranging from 0 to b. The positions of the dislocations with
the Burgers vectors −s and s are denoted as x = x1 and x = x2, respectively (see figures 1(a)–
(d)).

The energy change �Wnd associated with the formation of a nanodisturbance is
defined as the difference between the energy of the matrix–nanoparticle composite with the
nanodisturbance and the energy of the composite without a nanodisturbance. It can be written
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as

�Wnd = W self
nd + Wnd-f + Wnd-τ + Wγ . (1)

Here W self
nd denotes the partial dislocation dipole self-energy (including dislocation core

energies), Wnd-f the energy of the interaction between the dislocation dipole and the misfit
stress field, Wnd-τ the energy of the interaction of the dislocation dipole and external shear
stress τ and Wγ the stacking fault energy.

The self-energy W self
nd of the dislocation dipole is calculated as [21]

W self
nd = Ds2

[
−ln

d

s
+ 1

]
, (2)

where d = x2 − x1 and D = G/[2π(1 − ν)]. The energy Wnd-f of the elastic interaction of
the partial dislocation dipole with the misfit stress field is calculated using the expressions (see,
e.g. [22]) for the stress field of a rectangular inclusion with a dilatational eigenstrain. In doing
so, we find Wnd-f = Ds f (1 + ν)K (a, c, x1, x2), where

K (a, c, x1, x2) =
{
(x − x ′) ln

(x − x ′)2 + 4c2

(x − x ′)2
+ 4c arctan

x − x ′

2c

} ∣∣∣x′=a

x′=−a

∣∣∣x=x2

x=x1

. (3)

The energy Wnd-τ of the interaction between the dislocation dipole and the external shear
stress τ follows as

Wnd-τ = −τ sd. (4)

Finally, the stacking fault energy can be represented as Wγ = γ (s)d , where γ (s) is the
specific energy of the stacking fault connecting partial dislocations with the Burgers vectors
±s. In a first approximation, the expression for the specific energy of the stacking fault γ (s)
can be chosen as

γ (s) = κ Db sin(πs/b), (5)

where κ � 1 is a dimensionless parameter. This expression reflects evolution of the stacking
fault energy with a change in s characterizing the nanoscale ideal shear along the stacking fault.

With the expressions for the energies W self
nd , Wnd-f, Wnd-τ and Wγ substituted into

formula (1), we obtain the following expression for the energy change �Wnd:

�Wnd = Db2

[
p2

(
−ln

d

s
+ 1

)
+ p(1 + ν) f

K (a, c, x1, x2)

b
− p

τd

Db
+ κ

d

b
sin(πp)

]
, (6)

where p = s/b. With the analysis of formula (6) in the examined case of d � (2a, 2c), we
find that the nanodisturbance is most favourable to nucleate near the left nanoparticle corner
x = −a. Therefore, in the following calculation of �Wnd, we put x1 = −a − d/2 and
x2 = −a + d/2.

The dependences �Wnd(s/b) are presented in figure 2, for a = c = 50b, d = 20b,
ν = 0.3, κ = 0.01, x1 = −a − d/2, x2 = −a + d/2 and different values of f and τ . Figure 2
shows that the dependences �Wnd(s/b) either monotonically increase or have a minimum.
In the former case, the formation of the nanodisturbance at the matrix–nanoparticle interface
is energetically unfavourable. In the latter case, the formation of a nanodisturbance with a
not too large Burgers vector diminishes the energy of the matrix–nanoparticle composite. The
growth of the magnitude s of the Burgers vectors of the non-crystallographic partial dislocations
(figures 1(a)–(d)) is energetically beneficial as long as it results in a decrease in the energy
�Wnd. In other words, the formation of the dipole of perfect dislocations with the Burgers
vectors ±b is energetically favoured, if (∂�Wnd/∂s)|s=b � 0. Moreover, the formation of the
dipole of perfect dislocations by the new mechanism (figures 1(a)–(d)) is characterized by the
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Figure 2. Dependences of the energy change �Wnd (in units of Db2) associated with the formation
of a nanodisturbance at the interface of a matrix and a rectangular nanoparticle on the normalized
magnitude s/b of the partial dislocation Burgers vectors.

absence of an energetic barrier, if (∂�Wnd/∂s) � 0 during growth of s from zero to b. In
particular, the latter relation is satisfied at the parameter values f = 0.04 and τ = 0.05D, for
which the bottom curve in figure 2 is plotted. In general, as follows from figure 2, the formation
of the dipole of perfect dislocations at the matrix–nanoparticle interface due to the nucleation
of a nanodisturbance can occur as a non-barrier process at high values of misfit f or shear stress
τ . Furthermore, our analysis shows that for high enough misfit f ( f > 0.041) the non-barrier
formation of a perfect dislocation dipole by this mechanism can occur even in the absence of
an external shear stress (at τ = 0).

Now consider the generation of a dipole of perfect dislocations with the Burgers vectors
±b = ±b ex at the nanoparticle–matrix interface (figures 1(e)–(h)). Let the dislocations −b
and b (that compose the dipole) nucleate and glide in the plane y = c and have the coordinates
x = x1 and x = x2, respectively (see figures 1(e)–(h)). The variation �Wd of the system energy
associated with the formation of a dipole of perfect dislocations is defined as the difference
between the energy of the composite with the dislocation dipole and the energy of the composite
without the dipole. The energy variation �Wd is calculated in the same way as the energy
change �Wnd. In doing so, we find

�Wd = Db2

[
−ln

d

b
+ 1 + (1 + ν) f

K (a, c, x1, x2)

b
− τd

Db

]
, (7)

where d = x2 − x1, as above. In the examined case of d � (2a, 2c), the dislocation dipole
is easiest to nucleate near the left nanoparticle corner x = −a, as with nanodisturbances.
Therefore, for the analysis of dipole nucleation we assume that x1 = −a − d/2 and x2 =
−a + d/2.

With formula (7), we have calculated the dependences �Wd(d/b), for the case a = c =
50b, ν = 0.3, x1 = −a − d/2, x2 = −a + d/2 and different values of f and τ . These
calculations show that �Wd first increases and then decreases. In the region of small values
of d , where �Wd grows with d , the dipole dislocations are attracted to each other and tend
to annihilate. In the area of large values of d , where �Wd reduces with an increase in d ,
the dislocations repulse. Thus, to move apart, the dislocations have to overcome an attraction
region. The maximum value of �Wd represents the energetic barrier that the nanocomposite
has to overcome to form a stable dislocation dipole. Following our estimates, the magnitude
of this energetic barrier is high; it is several times larger than the dislocation core energy. As
a consequence, even at very high values of external shear stress τ (τ = 0.05D ≈ G/90) and
a sufficiently high value of misfit f ( f = 0.02), the standard mechanism (figures 1(e)–(h))
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Figure 3. Dependences of the force F (in units of Db) acting on a dislocation, that glides along the
nanoparticle boundary, on the normalized dislocation coordinate x2/b.

for the formation of a dislocation dipole is unfavoured compared to the new mechanism
(figures 1(a)–(d)).

It should be noted that, if the lattice dislocations nucleating at a nanoparticle–matrix
interface (figure 1(d)) glide in opposite directions far enough, then the nanoparticle serves as
a source of lattice dislocations. While the dislocation −b can move far away after it has left
the attraction zone of the other dislocation, the dislocation with the Burgers vector b may be
stopped near the nanoparticle corner x = a due to the nanoparticle misfit stress effect. To
estimate the possibility that the dislocation b moves far from the nanoparticle, we calculate
the force F = Fex acting on this dislocation. The force F is calculated from the relation
F = −∂�Wd/∂x2 as

F = Db

{
τ

D
− (1 + ν) f ln

(x2 + a)2[(x2 − a)2 + 4c2]
(x2 − a)2[(x2 + a)2 + 4c2] − b

x2 − x1

}
. (8)

For simplicity, in the following, we mainly focus on the case where the dislocation b is close
to the nanoparticle corner x = a and slows down in this region while the other dislocation
−b rapidly glides away from the dislocation b. In this case, we neglect the relatively weak
interaction between the dislocations and put x1 → −∞.

The dependence of the force F (in units of Db) on the coordinate x2 is shown in figure 3
for a = c = 50b, ν = 0.3, f = 0.005, x1 = −∞ and different values of shear stress τ . The
dislocation b is repelled from the dislocation −b if F > 0, and is attracted to it if F < 0. As is
seen from figure 3 and formula (8), the force F has a logarithmic singularity at the nanoparticle
corner x = a. This results in the existence of an equilibrium position for the dislocation
b near the nanoparticle corner. The singularity of the force F at the nanoparticle corner is
the consequence of the singularity of the shear stress created by the nanoparticle in the linear
elasticity theory applied here. To estimate the values of shear stress τ at which the dislocation
b may move far away from the nanoparticle, we suppose that this dislocation may overcome
the attraction region near the nanoparticle corner x = a (where the force F is negative), if the
width δ of this region does not exceed 5b. The latter condition is met if τ > τc, where τc is a
critical stress. In this case, taking into account that δ2/16 � (a2, c2), from formula (8) and the
condition x1 → −∞ we obtain the following expression for τc:

τc = (1 + ν)D f ln
16a2c2

25(a2 + c2)b2
. (9)
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As follows from formula (9), the critical stress τc is proportional to misfit f and grows with
nanoparticle sizes a and c. If misfit f is not very small (more than several thousands), τc

reaches very high values. For example, for ν = 0.3 and f = 0.01, we have τc ≈ 0.087D ≈
G/50 at a = c = 50b, and τc ≈ 0.045D ≈ G/100 at a = c = 10b. For ν = 0.3 and
f = 0.05, we obtain τc ≈ G/10 at a = c = 50b and τc ≈ G/20 at a = c = 10b. These
values of local shear stress can be reached in shock-loaded nanocomposites and near local stress
concentrators in nanocomposites under quasi-static deformation.

Thus, in this paper a new mechanism for dislocation nucleation in deformed nanoparticle–
matrix nanocomposites—the nucleation of nanoscale dipoles of non-crystallographic partial
dislocations with continuously growing Burgers vector magnitude (figures 1(a)–(d))—has
been suggested. According to our analysis of the energy characteristics of this mechanism,
it effectively competes with the standard mechanism (figures 1(e)–(h)) in wide ranges of
applied stress and misfit values. Also, it is theoretically shown that nanoparticles can serve as
sources of dislocations in nanoparticle–matrix nanocomposites deformed at high mechanical
stresses. The discussed phenomena of dislocation nucleation and emission at nanoparticles
are worth being experimentally examined and theoretically described in detail in the future.
Of special importance will be experimental ‘in situ’ observation of the dislocation nucleation
events at nanoparticles in deformed nanocomposites with various compositions and geometric
parameters. Besides, the discussed new mechanism for dislocation nucleation is of general
fundamental interest, because it can effectively operate in various solid structures, in particular
film–substrate composites, Gum Metal structures [23] and nanocrystalline solids deformed by
unusual deformation modes [24, 25].

This work was supported, in part, by the Office of US Naval Research (grant N00014-05-1-
0217), INTAS (grant 03-51-3779), INTAS-AIRBUS (grant 04-80-7339), the Russian Academy
of Sciences Programme ‘Structural mechanics of materials and construction elements’, Russian
Science Support Foundation and Federal Agency of Science and Innovations (grant MK-
8340.2006.1).
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